Avto-profi-evakuator.ru

Авто Профи
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов коллекторного двигателя 220в – Схема регулятора оборотов коллекторного двигателя 220В

Регулятор оборотов коллекторного двигателя 220в – Схема регулятора оборотов коллекторного двигателя 220В

Схема регулятора оборотов коллекторного двигателя 220в бывает двух типов — стандартная и модифицированная. Все зависит непосредственно от регулятора, который вы используете.

  • Зачем они нужны
    • Коллекторные электродвигатели
    • Стандартные схемы
    • Модифицированная схема

    Зачем они нужны

    Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.

    Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

    Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

    Коллекторные электродвигатели

    Конструкция любого коллекторного двигателя включает несколько основных элементов:

    • Коллектор;
    • Щетки;
    • Ротор;
    • Статор.

    Работа стандартного коллекторного электродвигателя основана на следующих принципах.

    1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
    2. В результате подачи тока от источника 220в образуется поле — магнитное.
    3. Под воздействием магнитного напряжения начинается вращение ротора.

    Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

    • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах;
    • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов;
    • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

    Регуляторы оборотов

    Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

    • Стандартная схема регулятора оборотов;
    • Модифицированные устройства контроля оборотов.

    Разберемся в особенностях схем подробнее.

    Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Стандартные схемы

    Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

      Изготовить динистор не составит труда. Это важное преимущество устройства;

    Если вас интересует принцип работы, то такая схема выглядит довольно просто.

    1. Заряд тока от источника 220 Вольт идет к конденсатору.
    2. Далее идет напряжение пробоя динистора через переменный резистор.
    3. После этого происходит непосредственно сам пробой.
    4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
    5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
    6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
    7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
    8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

    Модифицированная схема

    Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

    Наиболее часто применяемыми схемами являются две:

      Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток — большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение;

    Простой самодельный регулятор

    Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

    Это дополнительные навыки для вас и определенная экономия средств для кошелька.

    Для изготовления регулятора вам потребуется:

    • Набор проводков;
    • Паяльник;
    • Схема;
    • Конденсаторы;
    • Резисторы;
    • Тиристор.

    Монтажная схема будет выглядеть следующим образом.

    Согласно представленной схеме, регулятор мощности и оборотов будет контролировать 1 полупериод. Расшифровывается она следующим образом.

    1. Питание от стандартной сети 220в поступает на конденсатор. 220 Вольт — стандартный показатель бытовых розеток.
    2. Конденсатор, получив заряд, вступает в работу.
    3. Нагрузка переходит к нижнему кабелю и резисторам.
    4. Положительный контакт конденсатора соединяется с электродом тиристора.
    5. Идет один достаточный заряд напряжения.
    6. Второй полупроводник при этом открывается.
    7. Тиристор через себя пропускает полученную от конденсатора нагрузку.

    При большой мощности электродвигателя, питающегося от постоянного или переменного тока, регулятор дает возможность применять агрегат более экономично.

    Самодельные регуляторы оборотов имеют полное право на свое существование. Но когда речь заходит о необходимости использовать регулятор электродвигателя для более серьезного оборудования, рекомендуется купить готовое устройство. Пусть оно обойдется дороже, но вы будете уверены в работоспособности и надежности агрегата.

    Стандартнаясхема подключения трехфазного двигателя

    шильдик электродвигателя ua-motor

    Чтобы понять, как можно подключать конкретный мотор, следует изучить его шильдик.

    На рисунке ниже отображено, что «звезду» можно использовать при работе с трехфазной сетью (и последующим переключением на «треугольник») с напряжением 380 В, а «треугольник» для подключения трехфазного двигателя в однофазную сеть на 220 В.

    На рисунке ниже отображено, что «звезду» можно использовать при работе с трехфазной сетью (и последующим переключением на «треугольник») с напряжением 380 В, а «треугольник» для подключения трехфазного двигателя в однофазную сеть на 220 В.

    На доске зажимов это будет выглядеть так:

    Подключение Треугольник и Подключение Звезда

    Схема подключения электродвигателя «Звезда»

    Так называется способ, при которой концы обмоток соединяются в одной точке – нейтральной. К главным преимуществам схемы относят плавный разгон двигателя, в результате чего напряжение не будет «скакать», а корпус двигателя в ходе работы – меньше нагреваться.

    Подключение асинхронного двигателя по схеме «Треугольник»

    Подобная схема асинхронного двигателя подразумевает, что обмотки соединяются последовательно: конец одной подсоединяется с концом следующей. В этом случае устройство работает с максимальной мощностью. Как следствие – мотор функционирует с большими тяговыми усилиями, повышается вращающий момент.

    В теории можно произвести подобное подключение 3х-фазного двигателя как «звездой», так и «треугольником». Разница, что в первом варианте оборудование будет работать при пониженной мощности, а значит, может не потянуть требуемую нагрузку. При «треугольнике» же двигатель функционирует с мощностью, которая превышает мощность при работе по схеме «звезда» почти в три раза. Этого достаточно для решения большинства производственных задач.

    Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Схемы вывода обмоток двигателей

    В трехфазном двигателе электрическом катушечные группы (обмотки) обычно подводятся к шести клеммам в распределительной коробке двигателя. Клеммы соединяются посредством трех пластин, соединяющих катушечные группы в звезду или треугольник. Катушечные группы имеют условно буквенное обозначение U, V и W, а 2 вывода катушечной группы — начало и конец обозначаются 1 и 2 соответственно.

    Фазы обмотки статора после подключения к сети подключаются по одной из схем:

    Подключение по схеме звезда

    Можно легко догадаться, что этот тип подключения схематически похож на звезду с тремя лучами – это когда три конца статорной обмотки обираются в одну точку, и напряжение в 380 вольт подается на начало каждой из обмоток.

    Подключение по схеме треугольник

    По аналогии с предыдущей схемой, этот тип подключения схематически похож на треугольник – обмотки статора соединяются последовательно – конец одной обмотки соединён с началом следующей. К каждой обмотке подается напряжение 380 вольт.

    Подключение двигателя электрического к трёхфазной сети 380 вольт

    Наши действия при подключении двигателя:

    1. Какое напряжение нам нужно и позволяет ли наша сеть подключить данный двигатель.

    2. Информация о возможности подключения по напряжению, как правило, схематически отражено на шильдике: Δ / Y

    Двигатель для однофазной сети 220В ↓

    Двигатель для трехфазной сети 220/380В ↓

    3. Для подключения трёхфазного двигателя необходимо одновременно подать напряжение на три фазы.

    При современных возможностях пускозащитной аппаратуры существует два варианта подключения электродвигателя через автоматику:

    — с применением АЗД

    АЗД — (автомат защиты электродвигателя) уберегает электродвигатель от перегрузок. При перегрузке у двигателя значительно повышаются рабочие токи, АЗД автоматически выключает питание, при превышении определенных значений соответствующего к конкретному электродвигателю. Данное устройство способно отключить электродвигатель в случае короткого замыкания и потере фазы в сети. К АЗД также предлагаются дополнительные контакты – расцепители напряжения. Такой контакт обеспечивает автоматическое включения АЗД при полном восстановлении напряжения в сети.

    Схема подключения на рисунке:

    Подключение двигателя электрического к однофазной сети 220 вольт

    Для подключения к сети 220 В используются, так называемые, однофазные электродвигатели, которые подключаются именно к бытовой сети с напряжением 220 вольт, достаточно просто вставить вилку в розетку. Максимально допустимая мощность электродвигателя, который разрешено подключать к бытовой однофазной сети в России – 2,2 кВт. Однако на рынок осуществляются поставки электродвигателей с мощностью до 4 кВт из КНР под брендом и гарантией компании РФ, использование таких двигателей допустимо, но нужно быть уверенным, что сеть выдержит. Возможно подключение однофазного двигателя через частотный преобразователь, предназначенный для бытовой сети 220 В. Можно самостоятельно подключить трехфазный электродвигатель в сеть с питанием 220 с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя примерно на 30%. Лучше приобретать однофазный электродвигатель заводской сборки, который выдает именно ту мощность, которая указана на бирке электродвигателя.

    Частотный преобразователь в современных условиях

    Частотные преобразователи (фото 1) используются для управления частотой вращения электродвигателя, что позволяет не только экономить электроэнергию, но и управлять, например в насосах, подачей и напором перекачиваемой жидкости. При использовании ЧП необходимо учитывать, что регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей. Для работы на низкой частоте, т. е. уменьшение частоты вращения более 30% (увеличивается перегрев обмоток двигателя) требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя (фото 2). А при увеличении частоты вращения более 30% (при таких скоростях есть вероятность выхода из строя подшипников), требуется замена подшипников на усиленные.

    2 основных принципа при изготовлении РН 0-5 вольт

    1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
    2. Питание микросхем производится только постоянным током.

    Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

    Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

    • Первый вывод – входной сигнал.
    • Второй вывод – выходной сигнал.
    • Третий вывод – управляющий электрод.

    Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

    СНиП 3.05.06-85

    СНиП 3.05.06-85

    Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

    Регулятор напряжения 0 — 220в

    Подключение электродвигателя 380В на 220В

    Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):

    МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

    Конденсатор МБГВ маркировка

    Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

    Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

    способы соединения обмоток электродвигателя в соответствии с паспортными данными

    Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

    Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

    При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

    Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

    Схемы подключения электродвигателя через конденсатор.

    1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

    схема подключения электродвигателя 380 на 220

    Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

    Cр=4800 * Iн/Uс ; мкф

    где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

    В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

    2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

    схема подключения электродвигателя 380в через конденсатор

    Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

    Cр=2800 * Iн/Uс ; мкф

    где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

    В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

    Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

    Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

    Cп= (2,5…3) * Cр ; мкф

    схемы подключения электродвигателя 380 на 220 с пусковым конденсатором

    При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

    Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

    пускатель нажимной с пусковым контактом ПНВС-10

    Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

    Реверс электродвигателя подключенного на 220 Вольт через конденсатор.

    Итак, из схем приведенных выше следует, что при любом способе соединения обмоток (звезда или треугольник) в клеммной коробке двигателя остается три точки для его подключения к сети, условно: на первый вывод подключается ноль, на второй — фаза, а на третий подается фаза через конденсатор, но что делать если двигатель при запуске начал вращаться не в ту сторону в которую необходимо? Что бы изменить направление вращения двигателя подключенного через конденсатор необходимо просто переключить фазный провод с одного вывода электродвигателя на другой, а нулевой провод при этом оставить на том же выводе, т.е. условно: ноль оставить на первом выводе, фазу подать на третий, а на второй подать фазу через конденсатор.

    изменение направления вращения двигателя подключенного через конденсатор

    Т.к. переключение выводов в клеммной коробке занимает определенное время, то в случае необходимости часто менять направление вращения конденсаторного электродвигателя лучше применять схему подключения через однополюсный пакетный переключатель на 2 направления:

    реверсивное подключение двигателя на 220 вольт через конденсатор

    При такой схеме в положении пакетного выключателя «0» двигатель будет отключен, а при положениях «1» и «2» запускаться по часовой либо против часовой стрелки.

    Использование группы (блока) конденсаторов.

    При подключении электродвигателя через конденсатор очень важно как можно точнее подобрать его емкость. Чем ближе будет значение фактической емкости конденсатора к расчетной тем более оптимальным будет сдвиг вектора напряжения относительно вектора тока, что в свою очередь даст более высокие показатели момента на валу двигателя и его КПД.

    Например: согласно расчету необходимая емкость рабочего конденсатора составила 54 мкФ, при этом найти конденсатор подходящей емкости не удается, в таком случае наиболее целесообразным вариантом является использование группы параллельно соединенных конденсаторов (конденсаторного блока).

    Как известно, при параллельном соединении конденсаторов их емкость суммируется, таким образом, что бы получить нужные нам 54 мкФ можно использовать 2 параллельно соединенных конденсатора — на 40 и на 14 мкФ (40+14=54), либо любое другое количество конденсаторов суммарная емкость которых будет давать нужное значение, например 30, 20 и 4 мкФ:

    общая емкость параллельно соединенных конденсаторов

    Примечание: Все конденсаторы в группе должны быть одного типа, иметь одинаковое номинальное напряжение и частоту.

    Подробнее о схемах подключения конденсаторов и расчета их характеристик читайте в статье: Схемы соединения конденсаторов — расчет емкости.

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    голоса
    Рейтинг статьи
    Читайте так же:
    Регулировка холостого хода на акценте
Ссылка на основную публикацию
Adblock
detector