Avto-profi-evakuator.ru

Авто Профи
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварочные трансформаторы; устройство, виды, как работают

Сварочные трансформаторы — устройство, виды, как работают

Сварочный трансформатор предназначен для создания электрической дуги, с помощью которой осуществляется дальнейший процесс ручной сварки или сварки под флюсом. Он преобразуют высокое напряжение сети в низкое во вторичной цепи до необходимого для сварки уровня. Такое вторичное напряжение на холостом ходу варьируется от 60 до 75 Вольт. При осуществлении сварки при малых токах (от 60 до 100 Ампер) напряжение холостого хода должно составлять не менее 70 Вольт.

Устройство сварочного трансформатора

Рассмотрим подробнее сварочный трансформатор: устройство и принцип действия. Регулировка тока в сварочном трансформаторе (далее – СТ) осуществляется по двум основным схемам:

  1. В первом случае, применяется трансформатор с нормальным рассеянием магнитного поля, которое осуществляется совмещённым или отдельным дросселем. Непосредственно сама регулировка сварочного тока производится изменением воздушного зазора в магнитопроводе дросселя;
  2. Во втором случае, регулировка гаджета осуществляется за счет управления рассеянием магнитного поля. Этот процесс может осуществляться следующими методами:
  • изменением размеров воздушного промежутка между первичной и вторичной обмотками;
  • согласованным изменением числа витков первичной и вторичной обмоток;
  • применением подмагничиваемого шунта. Он изменяет магнитную проницаемость между стержнями магнитопровода, чем и осуществляется регулировка сварочного тока.

Конструкция и органы управления однопостовым сварочным трансформатором с подвижными обмотками (т. е. работающим по первой схеме) приведены на рисунке.

Органы управления сварочным трансформатором. Ист. http://moiinstrumenty.ru/svarochnyj/svarochnyi-transformator-svoimi-rukami.html.

Органы управления сварочным трансформатором. Ист. http://moiinstrumenty.ru/svarochnyj/svarochnyi-transformator-svoimi-rukami.html.

Магнитопровод с катушками и механизмами помещается в защитный кожух, который имеет жалюзи для охлаждения. Регулировка величины сварочного тока в таком СТ осуществляется с помощью подвижной обмотки, которая перемещается посредством ходовой гайки и вертикального винта с ленточной резьбой. В движение последний приводится при помощи рукоятки.

Сварочные провода подключаются к специальным зажимам. СТ представляет собой массивную конструкцию (очень тяжёлый сердечник). Поэтому, для погрузо-разгрузочных работ, он оснащён рым-болтом, а для перемещения по рабочему объекту – транспортной тележкой и ручкой.

Конструкция

  • Сердечник. Обычно он изготавливается из стальных пластин. Эта деталь служит для преобразования электромагнитного потока.
  • Первичная обмотка. На нее подается входящий ток. Обмотка представляет собой проволоку определенной длинны и сечения. От этих параметров будет зависеть, какое напряжение можно подать.
  • Вторичная обмотка. На ней продуцируется исходящий ток. Если в этот момент сварка не ведется и вторичный ток отсутствует, это называется холостым ходом трансформатора.
  • Регулирующие элементы. Чтобы можно было установить нужное значение выходящего напряжения, обычно используются подвижные обмотки или перемещение рассеивающих сердечников.
  • Зажимы для вывода напряжения на электроды.
  • Корпус. Вся конструкция защищается кожухом от повреждений, а также для предупреждения поражения током.
Читайте так же:
Регулировка топливной колонки нара

Изменение количества витков

Такой способ действует благодаря повышению или уменьшению показателя трансформации. Для этого используют вспомогательные отводы вторичной обмотки.

Переключение между элементами помогает менять рабочее напряжение, мощность дуги. Регулятор способен работать с высокими силами электротока. Недостатками считают сложность приобретения коммутатора с требуемыми характеристиками, малый диапазон настроек.

Схема

Трансформаторы с увеличенным рассеянием

В отличии от силовых трансформаторов не сварочного назначения, у которых потери магнитных потоков стремятся уменьшить, большая часть сварочных трансформаторов специально разработана с увеличенным магнитным рассеянием. Это достигается размещением первичной и вторичной обмотки на значительном расстоянии друг от друга. Проще всего пояснить принцип увеличения магнитного рассеяния на примере трансформатора, у которого первичная и вторичная обмотки разнесены на разные стержни (рис.1). Обычно такой трансформатор имеет цилиндрические ( реже дисковые ) первичную 1 и вторичную 2 обмотки и стержневой магнитопровод 3.

Конструктивная схема и распределение магнитных

Рис. 1. Конструктивная схема и распределение магнитных
потоков в трансформаторе с разнесёнными обмотками

Формирование падающей внешней характеристики в трансформаторе с увеличенным рассеянием

При размещении первичной и вторичной обмоток на значительном расстоянии друг от друга в трансформаторе возникают большие потоки магнитного рассеяния, в результате чего с увеличением тока нагрузки снижаются поток, сцепляющиеся со вторичной обмоткой, и вторичное напряжение, что и объясняет наличие падающей внешней характеристики.

Регулирование режима в трансформаторе с увеличенным рассеянием

Изменение числа витков первичной и вторичной обмотки. От части витков сделаны отпайки,так что при пересоединении проводов, соединяющих трансформатор с сетью и нагрузкой, фактически меняется число витков, участвующих в работе. При изменении числа витков первичной обмотки W1 по соотношению меняется напряжение холостого хода U0 и пропорционально ему вторичный ток I2 .

При регулировании изменением числа витков первичной обмотки приходится завышать сечение магнитопровода, а при регулировании по вторичной стороне — сечение обмоточного провода. Поэтому витковое регулирование используется редко и только в дополнение к другим способам.

Перемещение магнитного шунта . На пути потоков рассеяния Ф1р и Ф2р устанавливается пакет трансформаторного железа, который выполняет роль магнитного шунта, т.е. участка магнитной цепи, параллельного основному магнитопроводу. Магнитный шунт может перемещатся.

Подмагничивание магнитного шунта . Магнитный шунт может быть и неподвижным. В этом случае его сопротивление Rтр изменяется благодаря обмотке, питаемой постоянным током через регулировочный реостат. При увеличении тока управления увеличивается и поток Фу, что приведёт к насыщению железа шунта, т.е. увеличению его магнитного сопротивления Rтр. А это вызовет увеличение сварочного тока I2.

Читайте так же:
Как регулировать зазор клапанов змз 402

Изменение степени разнесения обмоток. Здесь часть витков вторичной обмотки W2a находится на том же стержне, что и первичная обмотка, между ними установлена нормальная магнитная связь. Две другие катушки с числом витков W2б и W2в разнесены с первичной обмоткина разные стержни, их магнитная связь с первичной обмоткой ослаблены.

Использование реактивной обмотки. Такая дополнительная обмотка устанавливается на пути потоков рассеяния, в режиме нагрузки в этой обмотке находится ЭДС.

При последовательном согласном соединении реактивной обмотки со вторичной их ЭДС складываются, что даёт ступень больших токов. При последовательном встречном включении их ЭДС вычитаются, в результате имеем диапазон малых токов.

Перемещение обмоток. Первичная и вторичные обмотки могут находится на одном стержне, но на значительном расстоянии друг от друга, в результате чего получаются большие потоки рассеяния Ф1р и Ф2р. Регулирование режима в этом случае осуществляется с изменением расстояния между обмотками.

Изменение соединения катушек первичной и вторичной обмоток. Если первичная и вторичная обмотки содержат каждая по две катушки, открывается ещё одна возможность ступенчатого регулирования. В варианте I используется половина обмоток трансформатора — одна первичная и одна вторичная катушка, в этом случае сопротивление трансформатора Хт1=Х’1+Х2. В варианте II две катушки первичной обмотки соединяются последовательно, две катушки вторичной обмотки соединены также последовательно. При этом индуктивное сопротивление двух половин трансформатора складываются, поэтому сопротивление трансформатора Хт2=2Х’1+2Х2=2Хт1 — вдвое выше, чем в первом варианте, а ток соответственно ниже. В варианте III катушки первичной обмотки соединены параллельно, так же параллельно соединены и катушки вторичной обмотки. При параллельном соединении складываются уже не сопротивления, а проводимости двух половин.

При таком регулировании напряжение холостого хода не меняется.

Трансформатор с подвижными обмотками.

Принцип действия такого трансформатора иллюстрирует рисунок 2. Наибольшее распространение получила конструктивная схема трансформатора со стержневым магнитопроводом 3, цилиндрическими первичной 1 и вторичной 2 обмотками, разбитыми каждая на две катушки. Подвижная обмотка ( обычно вторичная ) перемещается винтовым приводом 4. Основной поток трансформатора Фт замыкается по магнитопроводу, а потоки рассеяния Ф1р и Ф2р — по воздуху в пространстве между первичной и вторичной обмотками.

схема трансформатора с подвижными обмотками

Рис.2. Расчётная схема трансформатора с
подвижными обмотками

Падающая внешняя характеристика у трансформатора с подвижными обмотками получается благодаря увеличенному магнитному рассеянию, вызванному размещением первичной и вторичной обмоток на значительном расстоянии друг от друга.

Плавное регулирование режима, как уже отмечалось, производится благодаря перемещению подвижных обмоток. Ступенчатое увеличение тока осуществляется переключением катушек первичных и вторичных обмоток с последовательного на паралелльное соединение.

Читайте так же:
Процесс регулировки муфты сцепления трактора мтз 80

Регулирование тока у трансформатора с подвижными обмотками осуществляется за счёт изменения его индуктивного сопротивления: плавное перемещение обмоток, ступенчато-переключением соединения катушек параллельно или последовательно.

Конструкция трансформатора ТДМ - 317 У2

Рис.3. Конструкция трансформатора ТДМ — 317 У2

Трансформатор типа ТДМ-317 У2 является типичным примером серийной конструкции с подвижными обмотками (рис.3.7). Он имеет стержневой магнитопровод 2, первичную 6 и вторичную 4 обмотки, переключатель диапазонов тока 12, регулятор тока 1, раму8, колеса 7 и не показанный на рисунке кожух. Магнитопровод набран из холоднокатаных лакированных пластин высококремнистой трансформаторной стали марки 3414 толщиной 0,35 мм. Первичная и вторичная обмотки имеют по две катушки, расположенные попарно на стержнях магнитопровода.

Трансформатор с подвижным магнитным шунтом

Принцип действия трансформатора рассмотрим по рис.4. Он имеет неподвижные первичную 1 и вторичную 2 обмотки, стержневой магнитопровод 3 и подвижный магнитный шунт 4. Каждая обмотка имеет по две катушки, размещённые на разных стержнях. Потоки рассеяния Ф1р и Ф2р замыкаются через магнитный шунт.

Падающая характеристика у трансформатора с магнитным шунтом получается благодаря увеличенному рассеянию, вызванному размещением первичной и вторичной обмоток на значительном расстоянии друг от друга и наличием магнитного шунта.

Конструктивная схема трансформатора с подвижным магнитным шунтом

Рис.4. Конструктивная схема трансформатора с подвижным магнитным шунтом

Регулирование режима в трансформаторе с магнитным шунтом осуществляется: плавно- перемещением магнитного шунта, ступенчато- переключением обмоток и изменением степени разнесения обмоток по стержням.

Трансформатор с подмагничиваемым шунтом

В массовом порядке выпускались трансформаторы для механизированной сварки под флюсом типов ТДФ-1001У3 и ТДФ11601 У3.

Трансформатор ТДФ-1001 (рис.5) имеет стержневой магнитопровод 3 и неподвижный шунт 4 также стержневого типа. Магнитная проводимость шунта регулируется с помощью обмотки управления 5, питаемой постоянным током. Первичная обмотка 1, состоящая из двух параллельно соединённых катушек, закреплена у верхнего ярма. Вторичная обмотка 2 состоит из трёх частей по две параллельно соединённых катушек в каждой: катушки 2а расположена рядом с первичной обмоткой, а катушка 2б и 2в отделены от первичной обмотки магнитным шунтом. Поэтому потоки рассеяния весьма велики.

Конструктивная схема трансформатора с подмагничивающим шунтом

Рис.5. Конструктивная (а) и упрощённая принципиальная (б) схемы трансформатора с подмагничивающим шунтом

Падающая характеристика у трансформатора с подмагничиваемым шунтом получается благодаря увеличенному рассеянию, вызванному размещением первичной и вторичной обмоток (или части последней) на значительном расстоянии друг от друга и наличием магнитного шунта.

Основной способ регулирования режима заключается в изменении индуктивного изменения трансформатора при изменении магнитного сопротивления шунта.

Трансформатор с реактивной обмоткой

Иногда возникает необходимость в дешёвом трансформаторе с низким ПН и узким диапазоном регулирования, например, при сварке на монтаже или в быту. Такой простейший трансформатор (рис. 6) имеет стержневой магнитопровод 3, первичную 1 и вторичную 2 обмотки, разнесённые на разные стержни. Поэтому потоки рассеяния замыкаются не только по лобовым поверхностям и в окне магнито повода, но ещё и по воздуху между верхними нижним ярмами (Ф1яр и Ф2яр).

Читайте так же:
Как отрегулировать колесо мыши

Конструктивная схема трансформатора с реактивной обмоткой

Рис.6. Конструктивная (а) и упрощённая принципиальная (б) схемы
трансформатора с реактивной обмоткой

Трансформатор с обмотками, размещенными на разных стержнях, имеет падающую внешнюю характеристику благодаря увеличенному магнитному рассеянию как между стержнями,так и между ярмами магнитопровода.

Для регулирования режима используют реактивную обмотку 4. На рис. 6,б показано, что с помощью переключателя S эта обмотка последовательно соединена со вторичной.

Трансформатор с разнесёнными обмотками

Простейший трансформатор с разнесёнными на разные стержни обмотками может регулироваться и за счёт изменения числа витков вторичной и первичной обмотки. К сожалению, при этом одновременно меняется и напряжение холостого хода. Кратность такого регулирования не превышает 2. Поэтому витковое регулирование только за счёт увеличения или уменьшения числа витков обмоток в серийных конструкциях не применяется. Заметный эффект достигается при совмещении витков регулирования с изменением степени разнесения обмоток по стержням.

На рис.7 показан трансформатор, у которого вторичная обмотка разнесена на разные стержни, тогда как первичная расположена на левом стержне.

Схема трансформатора с витковым регулированием

Рис.7. Конструктивная схема трансформатора
с витковым регулированием

По схеме рис.7 изготавливается трансформатор ТСБ-145 на три ступени регулирования, он снабжён вентилятором и втычным переключателем ступеней. Подобную схему имеет и трансформатор ТДС-140. Выпускается также нерегулируемый трансформатор ТС-50.

Трансформатор с индуктивностью и ёмкостью

Схема трансформатора с индуктивностью емкостью в цепи дуги

Рис.8. Принципиальная схема трансформатора с
индуктивностью емкостью в цепи дуги

Устойчивость горения дуги при использовании трансформатора с индуктивностью и ёмкостью высокая, поскольку повторное зажигание происходит при совместном питании дуги от трансформатора и ёмкости.

Практически это означает, что при ручной дуговой сварке в случае использования достаточной ёмкости напряжение холостого хода можно снизить примерно до U0 = 35-40 В безопасности снижения устойчивости горения дуги. Снижение U0 приводит к увеличению коэффициента трансформации n = U1/U0= I2/I1 и пропорциональному снижению первичного тока I1. На этой основе удаётся разработать сварочный трансформатор на ток I2 до 100 А, питающийся от осветительной сети с U1=220В и первичным током 15А.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Регулировка сварочного аппарата

Есть разные способы управления током сварочного аппарата.

Читайте так же:
Lifan 168 регулировка зажигания

С подвижными обмотками и сердечником

Жесткость характеристики зависит от магнитной связи между первичной и вторичной катушками. Для ее изменения необходимо поменять расстояние между первичной и вторичной обмотками или величину воздушного зазора в магнитопроводе. Для этого сердечник или катушку крепят на специальной гайке, а винт оснащается рукояткой. При ее вращении гайка накручивается и подвижная часть меняет свое положение, что приводит к изменению тока.

Этот способ применяется в аппаратах переменного напряжения, а также дополнительно оснащенных диодными мостами.

Подмагничивание сердечника постоянным напряжением

Еще одним способом управления является подмагничивание сердечника постоянным напряжением. Намагниченный сердечник увеличивает сопротивление магнитному потоку, созданному первичной обмоткой. Это уменьшает ток дуги.

Интересно! На аналогичном принципе основана работа магнитного усилителя. Это устройство применялось в системах управления электроприводом до появления тиристорных преобразователей.

Балластные сопротивления

Одним из самых распространенных и простых способов регулировки является использование балластного сопротивления:

  • Активный балластник. Представляет из себя несколько проволочных или ленточных сопротивлений, которые переключаются при необходимости изменить ток электросварки. Используются с аппаратами всех типов. В самодельных устройствах малой мощности вместо комплекта сопротивлений используется спираль или змейка из нихрома.
  • Индуктивный балластник. Это дроссель, индуктивность которого может меняться при необходимости изменением числа витков или величиной воздушного зазора в магнитопроводе. Устанавливается последовательно со вторичной обмоткой до диодного моста.

Тиристорное управление

Эта регулировка применяется в выпрямителях, в которых часть или все диоды заменены тиристорами. При изменении угла открывания меняется действующее значение напряжения и ток устройства. Управление углом осуществляется переменными резисторами или более сложными схемами.

Недостатком этой схемы является превращение постоянного напряжения в пульсирующее, что ухудшает качество шва.

Важно! При угле открытия более 90° падает амплитудное значение, что ухудшает процесс зажигания дуги.

Регулировка первичной обмотки

Регулировка токов сварочного трансформатора по первичке осуществляется тиристорным ключом — двумя тиристорами, включенными встречно-параллельно при помощи переменного резистора, соединяющего управляющие вывода или небольшой транзисторной схемы.

Регулировка тиристорным ключом первичек позволяет управлять аппаратами переменного напряжения.

Все эти способы регулировки теряют свое значение вместе со старыми аппаратами и распространением новых, инверторных. Они экономичнее, легче, а некоторые магазины предлагают обменять старый катушечный сварочник на новый. Но пока старые устройства находятся в эксплуатации знание того, как же регулируется сварочный ток в трансформаторе позволит выполнять сварочные работы более качественно.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector