Avto-profi-evakuator.ru

Авто Профи
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Однофазный привод постоянного тока

Однофазный привод постоянного тока

В основе разработки электропривода лежит принцип работы следящего привода с одноконтурной системой регулирования. Привод предназначен для поддержания постоянных оборотов электродвигателя, в независимости от нагрузки на валу двигателя. Данная схема работает с регулированием по току.

Заменив трансформатор тока, на датчик напряжения, привод поддерживает постоянное напряжение на якоре. При наличии тахогенератора на валу двигателя, не изменяя схему, привод легко может быть доработан до двухконтурной системы с регулированием по скорости и по току.

Также для регулирования привода по току вместо трансформатора тока можно применить шунт, на соответствующий ток, включенный непосредственно в цепь якоря двигателя.

Принцип работы и устройство бесколлекторного двигателя

Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть). На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.

Установка частотно-регулируемых приводов (ЧРП) на насосы

В асинхронных электрических двигателях возникает необходимость регулировки частоты вращения ротора. С этой целью используется частотно-регулируемый привод, основным элементом которого является частотный преобразователь. В его конструкцию входит мост постоянного тока, он же – выпрямитель, преобразующий промышленный переменный ток в постоянный. Другая важная деталь – инвертор, выполняющий обратное преобразование постоянного тока в переменный с необходимой частотой и амплитудой.

Читайте так же:
Как синхронизировать контакты на мотороле

Принцип действия технологии

Стандартное управление насосами любых типов заключается в регулировке дросселей, устанавливаемых в напорных линиях и определении числа действующих агрегатов. За счет этого удается получить определенные технические параметры, такие как давление в трубопроводе и другие. Насосы имеют постоянную частоту вращения и не учитывают изменяющийся расход в результате переменного водопотребления. Даже в случае минимального расхода насосы будут поддерживать постоянную частоту вращения, приводя к созданию избыточного давления в сети и вызывая аварийные ситуации. Все это сопровождается значительным бесполезным расходом электроэнергии. В основном это происходит в ночное время при резком падении водопотребления.

Использование технологии

С появлением частотно регулируемого привода появилась возможность поддержки постоянного давления непосредственно у потребителей. Данные системы хорошо зарекомендовали себя в совокупности с асинхронными двигателями общего назначения. Регулировка частоты позволяет изменять скорость вращения вала, делая ее более высокой или низкой по сравнению с номинальной. Датчик давления, установленный у потребителя, передает информацию на частотно регулируемый привод, который, в свою очередь, изменяет частоту, поступающую к двигателю. Современные регулирующие устройства отличаются компактными размерами. Они размещаются в корпусе, защищенном от пыли и влаги. Благодаря удобному интерфейсу, приборы могут эксплуатироваться даже в наиболее сложных условиях, при широком диапазоне мощности – от 0,18 до 630 киловатт и напряжении 220/380 вольт.

Эффект от внедрения

Для объекта: экономия электроэнергии для привода насосов, надежная и автоматизированная подача тепловой энергии, теплоносителя и воды (срок окупаемости до 1,5 лет).

Для муниципального образования: улучшение качества и надежности теплоснабжения потребителей, уменьшение тарифа на тепловую энергию.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Читайте так же:
Регулировка уровня топлива в поплавковой камере карбюратора скутера

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Elektrodvigateli postoiannogo toka ustroistvo

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Читайте так же:
Транцевая пластина для регулировки двигателя пвх
Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Elektrodvigatel p.t. nezavisimoe vozbuzhdenie

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Elektrodvigatel p.t. parallelnoe vozbuzhdenie

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Elektrodvigatel p.t. posledovatelnoe vozbuzhdenie
Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Elektrodvigatel p.t. smeshannoe vozbuzhdenie

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Читайте так же:
Порядок регулировки клапанов на семерке
Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Elektrodvigateli postoiannogo toka skhema

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Способы возбуждения электродвигателей постоянного тока

В этой разновидности электрических двигателей применяются специальные обмотки, которые называются «обмотками возбуждения». Они приводят в действие сам механизм двигателя.

Независимое возбуждение

При данном типе подключения обмотка накручивается напрямую к источнику питания, при этом, характеристики двигателя с таким способом возбуждения схожи с характеристиками двигателей на постоянных магнитах.

Параллельное возбуждение

Обмотка возбуждения и ротор соединены с одним и тем же источником тока параллельным способом. В этой схеме ток обмотки возбуждения ниже, чем ток Ротора. Последовательное возбуждение. Обмотка последовательно соединяется с якорем. Скорость работы двигателя зависит от его нагрузки.

Читайте так же:
Регулировка термостата на тэнах

Смешанное возбуждение

Данная схема предполагает использование двух обмоток возбуждения, расположенных попарно на каждом полюсе электродвигателя. Обмотки могут быть соединены двумя способами: с суммированием или с вычитанием потоков.

способы возбуждения электродвигателей

Прямой пуск

Данный метод основан на прямом подключении якорной обмотки к электрической сети при номинальном напряжении двигателя. Прямой пуск можно применять только в случае наличия стабильного питания мотора, жестко связанного с приводом.

Этот способ является одним из самых простых. Температура при прямом пуске повышается, по сравнению с прочими способами, незначительно.

пуск прямой

Схема прямого пуска

Метод прямого пуска наиболее предпочтителен при отсутствии специальных ограничений на ток, поступающий от электросети.

Если электродвигатель работает в режиме частых запусков и отключений, его необходимо снабдить простейшим оборудованием. Его роль может выполнять расцепитель с ручным управлением. Напряжение в этом случае подается на клеммы электромотора.

Прямой пуск можно применять только на маломощных двигателях, поскольку пик нагрузки а крупных моделях может превышать номинальную нагрузку в 50 раз.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector