Avto-profi-evakuator.ru

Авто Профи
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор тока сделать самому своими руками: схема и инструкция. Регулятор постоянного тока

Регулятор тока сделать самому своими руками: схема и инструкция. Регулятор постоянного тока

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

регулятор тока

Симистор

Симистор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

Условное обозначение симистора на схемах

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – "затвор"). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Эквивалентная схема симистора на двух тиристорах

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Читайте так же:
Регулировки топливного насоса zexel

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Цепь защиты от ложных срабатываний

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор
Оптосимистор MOC3023

Устройство оптосимистора

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как "не подключается".

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Тиристорная схема управления 1

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Читайте так же:
Бензопила forward fgs 5204 регулировка карбюратора

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

M11 Ultra Smartphone Android 10.0 7.3 HDALLPOWERS 500W Portable Generator2021 Note 10 Pro Smart Phone 16G 512GB

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания. Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы. В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Тиристорная схема управления 2

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Smart TV Box AndroidMOOSOO 4-in-1 Cordless Wireless Handheld VacuumNO VAT 5600W Dual Drive Electric Scooter 80km/h

Управление тиристорами

В силовых электронных аппаратах чаще всего используется или фазное, или широтно-импульсное управление тиристором.

Схема с тиристорами

В первом случае регулировать токовую нагрузку можно за счет изменения углов или α, или θ. Это относится к принудительной нагрузке. Искусственную нагрузку можно регулировать только с помощью управляемого тиристора, который также называется запираемый.

При ШИМ (широтно-импульсной модуляции) во время Тоткр сигнал подается, а, значит, сам прибор находится в открытом состоянии, то есть, ток подается с напряжением Uн. В период времени Тзакр сигнал отсутствует, а сам прибор находится непроводящем состоянии.

Основные типы тиристоров

Кроме запираемых тиристоров разработана широкая гамма тиристоров различных типов, отличающихся быстродействием, процессами управления, направлением токов в проводящем состоянии и т.д. Среди них следует отметить следующие типы:

  • тиристор-диод, который эквивалентен тиристору со встречно-параллельно включенным диодом (рис. 6.12,a);
  • диодный тиристор (динистор), переходящий в проводящее состояние при превышении определённого уровня напряжения, приложенного между А и С (рис. 6,b);
  • запираемый тиристор (рис. 6.12,c);
  • симметричный тиристор или симистор, который эквивалентен двум встречно-параллельно включенным тиристорам (рис. 6.12,d);
  • быстродействующий инверторный тиристор (время выключения 5-50 мкс);
  • тиристор с полевым управлением по управляющему электроду, например, на основе комбинации МОП-транзистора с тиристором;
  • оптотиристор, управляемый световым потоком.
Читайте так же:
Настройка синхронизации времени тез

Рис. 6. Условно-графическое обозначение тиристоров: a) – тиристор-диод; b) – диодный тиристор (динистор); c) – запираемый тиристор; d) — симистор

Форум АСУТП

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 10 авг 2019, 16:37

Имеется силовой преобразователь 150кВт. Регулировка мощности в первичной обмотке трансформатора с помощью тиристоров. Дальше трансформатор и во вторичной обмотке 3-фазный выпрямитель (6 диодов). Изучаю вопрос защит в таком преобразователе. Конкретно не могу решить, чем контролировать исправность диода (-ов). Например если диод пробит, то получиться КЗ во вторичной обмотке трансформатора на треть периода, пока диод не испариться.
Как эту ситуацию контролируют, каким устройством?
Пока предположение: с помощью шунта в цепи постоянного тока (после диодов) измерять ток и сравнивать с ожидаемым значением. Но это все не быстро, какое-то бы реле специализированное.

MaksimNT освоился
освоилсяСообщения: 262 Зарегистрирован: 31 авг 2012, 05:30 Имя: Фоменко Максим Анатольевич Страна: РФ город/регион: гор. Нижнйи Тагил, Свердловской обл. Благодарил (а): 3 раза Поблагодарили: 76 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение MaksimNT » 11 авг 2019, 06:27

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 11 авг 2019, 10:37

MaksimNT освоился
освоилсяСообщения: 262 Зарегистрирован: 31 авг 2012, 05:30 Имя: Фоменко Максим Анатольевич Страна: РФ город/регион: гор. Нижнйи Тагил, Свердловской обл. Благодарил (а): 3 раза Поблагодарили: 76 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение MaksimNT » 11 авг 2019, 15:07

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 11 авг 2019, 17:46

MaksimNT освоился
освоилсяСообщения: 262 Зарегистрирован: 31 авг 2012, 05:30 Имя: Фоменко Максим Анатольевич Страна: РФ город/регион: гор. Нижнйи Тагил, Свердловской обл. Благодарил (а): 3 раза Поблагодарили: 76 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение MaksimNT » 11 авг 2019, 18:34

Часто применяемая в приводах постоянного тока, рассказанная мной схема, среагирует на полупериод === за 20 мс зафиксирует превышение и отключит.

А какое время реакции у установленного у Вас электронного реле ? 100 мс ? 3 сек ?
А какое время реакции у установленного у Вас расцепителя ? 10 мс ? 50 мс ?

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 11 авг 2019, 21:40

Хорошо, а виде готового устройства эта схема существует?

Отправлено спустя 4 минуты 27 секунд:
EOCR-3DE у нас такие стоят. Нет там слов про миллисекунды ))
Самое противное, что я так и не нашел на них мануала на английском языке.

MaksimNT освоился
освоилсяСообщения: 262 Зарегистрирован: 31 авг 2012, 05:30 Имя: Фоменко Максим Анатольевич Страна: РФ город/регион: гор. Нижнйи Тагил, Свердловской обл. Благодарил (а): 3 раза Поблагодарили: 76 раз

Читайте так же:
Регулировка силы постоянного тока

Контроль трехфазного выпрямителя

  • Цитата

Сообщение MaksimNT » 12 авг 2019, 18:10

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 12 авг 2019, 19:10

Никита почётный участник форума
почётный участник форумаСообщения: 3725 Зарегистрирован: 20 янв 2010, 22:23 Имя: Никита Страна: РФ город/регион: Мурманск Благодарил (а): 16 раз Поблагодарили: 172 раза

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Никита » 12 авг 2019, 20:46

Serex эксперт
экспертСообщения: 1659 Зарегистрирован: 15 авг 2011, 20:36 Имя: Пупков Сергей Викторович Страна: Россия город/регион: Москва Благодарил (а): 59 раз Поблагодарили: 91 раз

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Serex » 12 авг 2019, 22:03

Преды — предохранители? Да их нет, совсем. Есть общий на два трансформатора автомат и электронные реле защиты. А в готовых тиристорных регуляторах уже как правило готовые предохранители установлены, как раз по предохранителю на один тиристор. Точнее там на каждую фазу симистор, т.е. если строго, один предохранитель на два тиристора (один симистор).
Изображение

А это что такое? где их настроить?

Отправлено спустя 1 час 1 минуту 35 секунд:

Не, это все же сборка тиристоров, которая у нас собрана в семистор 🙂
у нас стоят Semikron SKKT 273
Изображение
Никита почётный участник форума
почётный участник форумаСообщения: 3725 Зарегистрирован: 20 янв 2010, 22:23 Имя: Никита Страна: РФ город/регион: Мурманск Благодарил (а): 16 раз Поблагодарили: 172 раза

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Никита » 13 авг 2019, 09:34

Это тот самый аппарат в голове. Он должен быть не просто выключателем нагрузки, а аппаратом защиты. И характеристика его должна давать возможность чувствовать КЗ за трансформатором. Диоды/тиристоры это не спасет, но трансформатор от КЗ во вторичке должно спасать. Если нет возможности — надо ставить и по вторичке. А вообще — по вторичке надо защиту ставить в любом случае.

И все-таки, лучше не на кофейной гуще, а на схеме гадать 🙂

Jackson администратор
администраторСообщения: 13286 Зарегистрирован: 17 июн 2008, 15:01 Имя: Евгений свет Брониславович Страна: Россия город/регион: Санкт-Петербург Благодарил (а): 348 раз Поблагодарили: 633 раза

Контроль трехфазного выпрямителя

  • Цитата

Сообщение Jackson » 13 авг 2019, 14:44

И это сложно, я б сказал «по-немецки».

У диода/тиристора два нештатных состояния: обрыв и пробой. Пробой — это КЗ, Ловится предохранителем. Обрыв — это отсутствие напряжения/тока, это ловить сложнее (готовых приборов на постоянном токе нет). Но обрыв ловить тоже нужно, потому что обрыв одного из диодов в мосте Ларионова при неизменной мощности нагрузки приводит к перегрузке двух оставшихся плеч.

Так что моё предложение — предохранители с бойком в каждое плечо.

Только вот есть одна проблема. Мощность у Вас регулируется тиристорами, напряжение и ток будут сильно нелинейными, подобрать характеристику предохранителя может оказаться непростой задачей.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Читайте так же:
Регулировка зажигания на яве 634 6 вольт

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими руками

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими руками

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector